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Despite little supporting evidence, there appears to be an implicit assumption that
the wakes of two-dimensional bluff bodies undergo transition to three-dimensional
flow and eventually turbulence, through the same sequence of transitions as observed
for a circular cylinder wake. Previous studies of a square cylinder wake support this
assumption. In this paper, the transition to three-dimensional wake flow is examined
for an elongated cylinder with an aerodynamic leading edge and square trailing edge.
The three-dimensional instability modes are determined as a function of aspect ratio
(AR = length to width). Floquet analysis reveals that three distinct instabilities occur.
These are referred to as Modes A, B′ and S′ through analogy with the modes for
circular and square cylinders. For aspect ratios less than approximately 7.5, Mode A
is the most unstable mode. For aspect ratios greater than this, the most unstable
mode switches to Mode B′. This has the same spatio-temporal symmetry as Mode B
for a circular cylinder, but a spanwise wavelength and near-wake features more in
common with Mode S for a square cylinder. The dominant wavelength for this mode
is approximately two cylinder thicknesses, much longer than for Mode B for a circular
cylinder. It is found that the critical Reynolds number for the onset of the Mode
A instability varies approximately with the square root of the aspect ratio. On the
other hand, the critical Reynolds number for Mode B′ is almost independent of
aspect ratio. For large aspect ratios, the separation in Reynolds number between the
critical Reynolds numbers is substantial; for instance, for AR = 17.5, these values are
approximately 450 and 700. In fact, for this aspect ratio, the third instability mode,
Mode S′, is more unstable than Mode A. These results suggest that the transition
scenario for elongated bluff bodies may be distinctly different to short bodies such
as circular or square cylinders. At the very least, the dominant spanwise wavelength
in the turbulent wake is likely to be much longer than that for a circular cylinder
wake. In addition, the reversal of the ordering of occurrence of the two modes with
the different spatial symmetries is likely to affect the development of spatio-temporal
chaos as a precursor to fully turbulent flow.

In conjunction with prior work, the current results indicate that nearly all three-
dimensional instabilities of the vortex street can be identified as one of only a handful
of transition modes.

1. Introduction
The formation of vortex structures in the wake of two-dimensional bluff bodies has

been the subject of intense study and debate for close to a century (e.g. von Kármán
1911; Roshko 1954; Berger & Wille 1972; Williamson 1996). Much of this work
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has focused on the circular cylinder, owing in part to the geometric symmetry and
simplicity, engineering practicality, and variation in results obtained over a wide range
of investigations (Roshko 1954; Bloor 1964; Gerrard 1966; Gaster 1971; and many
others). The establishment of a Hopf bifurcation instability, leading to the transition
from a steady wake flow field to laminar two-dimensional (von Kármán) shedding
has been well documented (Gerrard 1978; Perry, Chong & Lim 1982). For a circular
cylinder, this bifurcation occurs at Rec1 � 46–47 (Dusek, Fraunie & Le Gal 1994).
Further transitions result in the formation of three-dimensional vortex structures in
the wake and eventually, with increasing Reynolds number, lead to turbulence. For
a circular cylinder, when the Reynolds number exceeds a critical value Rec2 � 190,
the wake undergoes transition from two- to three-dimensionality. As the Reynolds
number is increased through the critical value, the wake first undergoes transition to
the Mode A instability, and as the Reynolds number is further increased, a second
transition to Mode B shedding occurs (Williamson 1988). Despite the intense focus on
circular cylinders, comparatively little work has been undertaken regarding the three-
dimensional wake flow transition process for bluff bodies with other cross-sections
with the implicit belief that the cylinder transition scenario is relatively generic, in
terms of flow transitions, the order of those transitions and the route to turbulent
flow. The work described in this paper aims to test this hypothesis for elongated
cylinders with streamlined leading and blunt trailing edges. Effectively, this geometry
allows wake transitions to be studied as a function of boundary-layer properties prior
to shear-layer separation into the wake.

As the Reynolds number is increased above the critical Reynolds number
(Rec2 � 140–194) there is a discontinuous drop in both the Strouhal number (St)
and base pressure coefficient (Cbp). Associated with this drop is the observation that
the primary Kármán vortices undergo sinusoidal spanwise perturbations with (for a
circular cylinder) a spanwise wavelength of 3–4 cylinder diameters (Brede et al. 1994;
Williamson 1996). Over several shedding cycles, the initial spanwise waviness grows
until vortex loops are formed and stretched in the braid regions to form counter-
rotating streamwise vortex pairs. These have the same spanwise wavelength as the
initial sinusoidal perturbations. Over successive primary Kármán vortex half-cycles,
streamwise vortex structures form at the same spanwise location as their predecessors;
however, their vorticity is of opposite sign; that is, the mode exhibits out-of-phase
symmetry. The structure described above has been termed Mode A shedding by
Williamson (1988) in his experimental analysis of the wake of a circular cylinder.
Similar wake patterns have been observed experimentally by Brede et al. (1994) and
Hammache & Gharib (1989).

A large range for the critical Reynolds number (Rec2 � 140–194) has been
experimentally recorded for the Mode A transition. This is partly due to the hysteretic
(or subcritical) nature of the transition (Henderson 1997), but mostly due to end effects
caused by three-dimensional flows at the cylinder ends. However, by suppressing
extrinsic three-dimensionalities, Miller & Williamson (1994) observed the critical
Reynolds number for Mode A transition of Rec2 = 194.

As the Reynolds number is further increased to Re ≈ 230–250, a new mode of
instability is intermittently observed, called Mode B (Williamson 1988). As the
Reynolds number is increased beyond Re =250, both observations and energy spectra
indicate that Mode B becomes the dominant mode and Mode A is suppressed.
For a circular cylinder, Mode B has a spanwise wavelength of approximately 1
diameter, and is conjectured to scale on the vorticity thickness of the braid shear
layer (Williamson 1996). The spanwise wavelength remains approximately constant
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over a broad Reynolds-number range (Mansy, Yang & Williams 1994); the remnants
of Mode B have been observed experimentally at Reynolds numbers up to 10 000.
Mode B exhibits in-phase symmetry; that is, successive streamwise vortex structures
from each side of the wake have the same sign.

Observations by Williamson (1988, 1996) have been verified experimentally, numeri-
cally and theoretically by a number of authors. Thompson, Hourigan & Sheridan
(1994, 1996) conducted (DNS) computational studies of the three-dimensional flow
around a circular cylinder. Their work verified the existence, and critical spanwise
wavelength, of both Mode A and Mode B. Hammache & Gharib (1989), Brede et al.
(1994), Zhang et al. (1995) and Henderson (1997) have also, through independent
experiments and simulations, verified the nature of both Mode A and Mode B in the
cylinder wake. Miller & Williamson (1994) give results for the spanwise wavelengths,
mode topology and critical Reynolds numbers that correspond very well with the
numerical Floquet stability analysis performed by Barkley & Henderson (1996). These
authors showed linear instability of spanwise Floquet modes close to the experimental
values for both Mode A and Mode B. They found critical Reynolds numbers of 188.6
for Mode A, and 259 for Mode B. While the latter prediction is considerably higher
than the experimental value, the linear theory assumes a two-dimensional base flow,
while in reality, the flow is already markedly three-dimensional after the flow has
undergone the Mode A transition. Owing to the nature of Floquet stability analysis,
only intrinsic linear instabilities may be deduced, and the experimentally observed
drop in both St and Cbp requires direct numerical simulations of the saturated wake
state. Henderson & Barkley (1996) observed that Mode A is a hysteretic or subcritical
transition. Henderson (1997) has observed the drop in base pressure associated with
the transition to Mode A shedding (in line with a hysteretic or subcritical transition);
however, it appears that the prediction of the magnitude of the drop requires a
very large spanwise computational domain size. Williamson (1996) has associated the
reduction with the spontaneous formation of large-scale vortex dislocations, which
occur experimentally at the same critical Reynolds number as for Mode A. These
large-scale vortex dislocations appear to be due to a nonlinear instability and occur
naturally once the Mode A instability has reached a nonlinear saturated state.

To date, very little work has been conducted on the flow field around bluff bodies
with cross-sectional geometry other than that of a circular cylinder. Zhang et al.
(1995) experimentally observed the existence of a Mode C instability in the wake of
a circular cylinder when a tripwire was placed adjacent to the cylinder in a direction
transverse to the fluid flow, thus breaking the symmetry. The Mode C instability
was found to have a spanwise wavelength of 1.8 cylinder diameters (between the
wavelength of the other modes), and was found to occur when the tripwire was
located within 1 diameter of the cylinder. Their results indicate that the suppression
of the flow field near the boundary layer results in a Mode C instability occurring in
preference to Mode A and Mode B. Numerical calculations performed by Zhang et al.
(1995) supported their experimental observations. Robichaux, Balachandar & Vanka
(1999) performed a Floquet stability analysis on a cylinder of square cross-section.
Their model predicted the existence of a third mode of instability, which they denoted
Mode S. While many physical features of this instability mode corresponded to those
found in the experimental and numerical work of Zhang et al. (1995), Robichaux et al.
(1999) did not refer to this instability as Mode C, as a trip wire was not required to
artificially break the planar symmetry and trigger the instability. Within the parameter
space modelled (150 < Re< 225), Mode S was found to be critical, but only after the
other two modes had already undergone transition, and hence may not be observed
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experimentally. Robichaux et al. (1999) found this mode was a subharmonic, with the
period double that of the base flow. Blackburn & Lopez (2003) have shown that it is
not a true subharmonic, but rather has a complex Floquet multiplier, with real part
negative and a small complex component; this combination of complex coefficients
means that the mode almost appears to repeat every second cycle. However, it is
not a true subharmonic (or period-doubled mode). Such modes can exist either as
travelling waves or modulated standing waves.

A considerable amount of work has also been done on the transition to three-
dimensionality in the wake of a very thin splitter plate. Two three-dimensional
instability modes have been identified which do not destroy the underlying two-
dimensional Kármán wake and are referred to as ‘Mode 1’ and ‘Mode 2’, respectively
(Lasheras & Meiburg 1990). Modes 1 and 2 were found to differ only in their sym-
metry properties, in particular, the spatial properties of Mode 2 agree closely with that
described for Mode A; however, Mode 1 was found to have markedly different spatial
properties to Mode B. Meiburg & Lasheras (1988) and Lasheras & Meiburg (1990)
have suggested that both Mode 1 and Mode 2 are due to a hyperbolic instability in the
braid region of the two-dimensional Kármán vortex street. However, as demonstrated
by Julien, Ortiz & Chomaz (2004), a hyperbolic instability does not account for the
spatial properties of Mode 2. Instead, they suggest that a hyperbolic instability within
the braid region is ‘slaved’ to an elliptic instability within the vortex core. This finding
is in agreement with the findings of Thompson, Leweke & Williamson (2001c) who
investigated the transition mechanism for Mode A in the wake of a circular cylinder.

Previous work has not adequately addressed whether the results obtained for the
circular cylinder wake describe all important three-dimensional instability modes
observed for nominally two-dimensional cylindrical bodies of different geometries,
or if the wake transition scenario observed for a circular cylinder is effectively the
generic scenario for other cylinders. Blackburn & Lopez (2003), following the work
of Barkley et al. (2000), have used group theoretical concepts to show that systems
with the same symmetries as cylinder wake flow can only undergo transitions with the
base flow period corresponding to the two spatio-temporal symmetries of Modes A
and B. Apart from these, Neimark–Sacker transitions (secondary Hopf bifurcations
of the periodic base flow), which generally have a period which is not commensurate
with the base flow period, are also possible (e.g. Mode S). However, the ordering
of transitions with the control parameter(s) can change, as well as the underlying
physical mechanism. In addition, it is possible that different physical mechanisms can
lead to different modes with the same spatio-temporal symmetries.

In the two examples above, a slight change in the geometry or symmetry has
introduced other transition modes or changed the order of appearance of the modes.
In view of this, this study focuses on numerical simulation of the flow around an
aerofoil leading-edge blunt trailing-edge cylinder, chosen because it is a relatively
simple geometry which limits shedding to a single point for each half of the wake.
In addition, the geometry is specified by a single parameter, the aspect ratio, and
hence the wake behaviour can be investigated as this parameter varies. Effectively,
the aspect ratio controls the boundary-layer characteristics at the point of separation
of the fluid into the wake.

2. Objective and approach
The aim of this study is to quantify the characteristics of the three-dimensional

instabilities in the wake of a nominally two-dimensional bluff cylinder. The basic
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Figure 1. Generalized bluff-body geometry to be investigated showing important parameters.

set-up is shown in figure 1. The leading-edge geometry is chosen to be streamlined
to prevent any vortex shedding into the boundary layer as it convects along the
cylinder surface and into the wake. Experiments with a semi-circular leading edge
showed that small boundary-layer vortices could occur at Reynolds numbers of order
1000 and possibly less (Welsh et al. 1990). An elliptical leading edge prevents this
from occurring. For all numerical experiments described in this paper, the elliptic
leading-edge has a major to minor axis ratio of 2.5:1. The cylinders have a square
trailing edge such that vortices are shed at the same spatial location regardless of the
Reynolds number. In each investigation, the cylinder is modelled as being immersed
within a uniform homogeneous incompressible Newtonian fluid with constant inlet
velocity U . The cylindrical geometry is described by a finite thickness (H ), and finite
chord or length (C) (again see figure 1).

There are two parameters governing the flow behaviour. The first is the aspect
ratio, AR = C/H , and the second is the Reynolds number Re =UH/ν, where ν is
the kinematic viscosity. Within the scope of this investigation four aspect ratios were
studied (AR = 2.5, 7.5, 12.5, 17.5), encompassing a non-equilibrium boundary layer at
small aspect ratio to a near-universal boundary layer (prior to flow separation) for
the larger aspect ratio studies. Through the course of the investigation, it was found
that the critical Reynolds number range for three-dimensional transition increased
substantially with aspect ratio. Hence, it was necessary to use higher Reynolds
numbers for the larger aspect ratios.

Numerical modelling was performed in two stages. Initially, the time-dependent
two-dimensional flow field around the cylinder is predicted by solving the time-
dependent Navier–Stokes equations in two dimensions. Above the critical Reynolds
number Rec1 two-dimensional instabilities saturate to form the familiar periodic flow
field in the form of a Kármán vortex street of period T . The stability of this periodic
two-dimensional base flow field to three-dimensional disturbances is then determined
using Floquet stability analysis.

2.1. Modelling the base flow

The base flow field was obtained from the numerical solution of the two-dimensional
time-dependent Navier–Stokes equations in primitive variable form

∂u
∂t

+ u · ∇u = −∇p + ν∇2u. (2.1)

Here, p is the kinematic pressure, ν is the kinematic viscosity and u = (u(t, x, y),
v(t, x, y)) is the two-dimensional velocity vector. This vector equation is coupled with
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the incompressibility constraint,

∇ · u = 0, (2.2)

to complete the set. These equations were solved using a high-order spectral-element
method. The spatial accuracy is determined at run time by choosing the order of the
tensor-product of interpolating polynomials within each macro-element as is usually
possible with finite-element schemes. The method incorporates a three-step time-
splitting method and achieves second-order time accuracy. Considerable testing and
validation of the code has been undertaken and it has been applied successfully to re-
lated problems (Thompson et al. 1996, 2001a, b). Section 2.3 details the computational
details specific to the current problem.

2.2. Floquet stability analysis

The base flow field’s stability to three-dimensional disturbances was then determined
as a function of Reynolds number and spanwise wavelength (λ). The same spectral-
element code used to calculate the two-dimensional base flow field was extended to
include the Floquet stability analysis technique.

The details of this are as follows. The velocity components and the kinematic
pressure are expanded as the base fields plus a perturbation

u(t, x, y, z) = u(t, x, y) + u′(t, x, y) sin(2πz/λ), (2.3a)

v(t, x, y, z) = v(t, x, y) + v′(t, x, y) sin(2πz/λ), (2.3b)

w(t, x, y, z) = w′(t, x, y) cos(2πz/λ), (2.3c)

p(t, x, y, z) = p(t, x, y) + p′(t, x, y) sin(2πz/λ). (2.3d)

The chosen sinusoidal z (spanwise) variation of the perturbation fields is appropriate
to satisfy the linearized (and constant coefficient with respect to z) time-dependent
three-dimensional Navier–Stokes equations for the perturbation fields exactly. Altern-
atively, complex forms for the z variation could be incorporated into the expansions.
The choice of complex forms for the z variation allows the mode to be identified as
a spanwise travelling mode or as a modulated standing wave; however, this is only
of consequence if the Floquet multiplier is complex at transition. These cases can be
detected using (2.3) since the real Floquet multiplier will be oscillatory. For cases in
which this occurs, further analysis using the full complex form for the perturbation
field was undertaken which allows modulated standing-wave and travelling-wave
solutions to be obtained (see Blackburn & Lopez 2003, for example).

Using the full three-dimensional Navier–Stokes equations and linearizing gives the
equations for the perturbation fields

∂u′

∂t
+ (u · ∇)u′ + (u′ · ∇)u = −∂p′

∂x
+ ν

(
∇2

xyu
′ −

(
2π

λ

)2

u′
)

, (2.4a)

∂v′

∂t
+ (u · ∇)v′ + (u′ · ∇)v = −∂p′

∂y
+ ν

(
∇2

xyv
′ −

(
2π

λ

)2

v′
)

, (2.4b)

∂w′

∂t
+ (u · ∇)w′ = −∂p′

∂z
+ ν

(
∇2

xyw
′ −

(
2π

λ

)2

w′
)

, (2.4c)

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (2.4d)

where ∇xy = ı̃ ∂/∂x + ̃ ∂/∂y.
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According to Floquet theory, the velocity and pressure perturbations grow or decay
exponentially from period to period. Thus, the perturbation fields satisfy the relation-
ship

r ′(t + T , x, y) = exp(σT )r ′(t, x, y), (2.5)

where r ′ represents any of the perturbation fields (u′, v′, w′ or p′). The coefficient
µ = exp(σT ) is often called the Floquet multiplier. If it is greater than unity, a
perturbation at that wavelength will be exponentially amplified and hence result in
three-dimensional flow. In reality, there are an infinite number of different modes with
different Floquet multipliers, but the mode(s) of most interest are those corresponding
to the largest Floquet multiplier, since it is that mode that grows fastest or decays
slowest and hence will dominate. The Reynolds number corresponding to µ = 1 is
said to be the critical Reynolds number of inception (Recrit). In experiments, this is
the lowest Reynolds number above which the instability will be observed, provided
the Reynolds number is increased from below. (The three-dimensionality may be
maintained below this critical Reynolds number if the Reynolds number is decreased
from above, provided the transition is hysteretic, as it is for Mode A.)

It is possible, using a suitable discretization, to use (2.4) and (2.5) to form an
eigenvalue problem which can be solved to determine µ for any Re and λ. In practice,
however, it is easier to integrate the perturbation equations forward in time directly,
starting from a random perturbation field and renormalizing the fields at the end of
each base flow period. After many cycles, only the dominant Floquet mode remains.
At this point, the ratio of the mode amplitude to the amplitude exactly one period
prior is equal to the Floquet multiplier for the dominant mode. (Here the amplitude
is measured by the L2 norm of any of the velocity perturbations.) The number of
integration periods required depends on the ratio of the Floquet multipliers of the
two most dominant modes. At the end of each period, the amplitude of the dominant
Floquet mode relative to all others increases by at least this factor. Typically, in the
simulations reported in this paper, 30–100 base flow periods were required to obtain
results accurate to at least three significant figures.

In the computational code, the perturbation equations were discretized and integra-
ted in time using the same spectral-element discretization used for the base flow. The
base flow is simultaneously integrated forward in time, which is required to solve the
perturbation equations. This procedure is slightly inefficient, since the base flow can
be calculated independently and a Fourier time decomposition used to supply the
base flow fields to the linearized perturbation equations (Barkley & Henderson 1996).
However, it has the advantage of examining the pseudo-stability of non-periodic base
flows. In addition, it has been implemented for a parallel computer cluster so that the
base flow is calculated on one node and the Floquet modes corresponding to different
wavelengths are simultaneously calculated on many other nodes; thus the inefficiency
is reduced considerably.

2.3. Computational details

Four spectral-element meshes were used for the calculations, each corresponding to a
different cylinder aspect ratio. The meshes were composed of N quadrilateral conform-
ing macro-elements. Within each element, a tensor-product of Lagrangian polynomial
interpolants of order n (in each direction) were used to approximate the solution
variables. The front and side boundaries of the domain were set to a uniform back-
ground flow in the x-direction (u =U ). Zero normal velocity derivatives were used at
the outlet boundary (while this can cause problems at higher Reynolds numbers, where
it can prevent vortices from leaving the domain, it does not cause any degradation of
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(b) (c)

(d )

Figure 2. Macro element meshes used for simulations, (a)–(d) correspond
to AR = 2.5, 7.5, 12.5, 17.5, respectively.

the solution accuracy in the neighbourhood of the cylinder for the Reynolds numbers
considered here). The boundary conditions for the perturbation velocity components
are: u′, v′, w′ set to zero at the upstream and side boundaries; and zero normal
velocity gradient at the downstream boundary. The inlet length (li), taken as the
distance of the inlet to the leading edge, and the sidewall boundary width (lw), taken
as the distance between the side boundary and the surface of the cylinder, were held
constant across all cylinder geometries. The outlet boundary length (lo), taken as the
distance between the trailing edge of the cylinder and the outlet boundary, was varied
between the different geometries, such that cylinders with a larger aspect ratio were
modelled with more macro-elements. The meshes used for the investigation are shown
in figure 2. The geometrical parameters defining each mesh are given in table 1.

Mesh independence was established by performing a p-type resolution study. The
order of the Lagrangian polynomial interpolants within each element was successively
increased until the solution was mesh independent. A separate grid resolution study
was performed for each mesh. The Reynolds number employed in the grid resolution
study was the highest Reynolds number examined in further computations. The
Strouhal number, lift and drag coefficients were measured and compared across the
range of n investigated. The results for the aspect ratio AR = 17.5 grid at a Reynolds
number Re= 700 are summarized in table 2. For all measures employed, the variation
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Dimension AR= 2.5 7.5 12.5 17.5

li/H , lw/H 10 10 10 10
lo/H 18 18 18 23.5
N 321 321 321 401

Table 1. Mesh parameters for the different aspect ratios considered.

n 5 6 7 8 9 10 11 12

CL(P ) 2.8585 1.5516 1.7550 1.6231 1.6824 1.6684 1.6845 1.6874
CD(P ) 1.4252 0.9609 1.0598 0.9942 1.0231 1.0095 1.0159 1.0156
CD(m) 1.4252 0.9609 1.0317 0.9661 0.9933 0.9806 0.9854 0.9853
St 0.2261 0.1752 0.1948 0.1840 0.1880 0.1861 0.1865 0.1865

Table 2. Convergence of global quantities with polynomial order n for the cylinder aspect
ratio AR= 17.5 grid at Re =730.

between the values at n= 10 and n= 12 is less than 1%, which is representative
of all the grids employed in this study. Ninth-order (n = 10) Lagrangian polynomial
interpolants were used for the tensor-product expansion basis for all subsequent
calculations.

A domain study was performed to evaluate blockage effects. As anticipated, the
Strouhal number was found to be sensitive to the sidewall boundary width. Results
from the p-type resolution study were crosschecked against a mesh with a larger
inlet length li = 22, sidewall domain length lw = 22, outlet length lo = 35, and N = 603
elements. The study was only performed on the AR =17.5 case, as this is the most
sensitive to boundary location. The tests were performed at the highest Reynolds
number examined in further computations for this mesh (Re = 700). The Strouhal
number was found to vary by 3.5 % from the results from the grid for the smaller
domain, and mean and peak drag forces were found to vary by 6 %. Despite this,
the smaller domain sizes listed in table 1 were used in this study, principally for
computational efficiency as it was felt that the physical mechanism governing the mode
transition would not be affected by the smaller domain mesh size. In order to test this
hypothesis, the Floquet multipliers over the full range of spanwise wavelengths, λ/H ,
reported in this study were calculated for the large mesh domain. The mode transition
order and topology were found to be the same as that calculated for the smaller mesh
domain size, as was the critical wavelength for each three-dimensional instability. The
critical Reynolds number describing the transition from two- to three-dimensional
flow was found to vary slightly with mesh domain size, with an accuracy of
�Re = 3.

In the following section, results from the Floquet stability analysis study are
presented.

3. Results
3.1. Two-dimensional results

While not the main focus of this study, a summary of the base flow field results are
presented in this section, in order to facilitate comparison of results with previous
studies.
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Figure 3. Spanwise vorticity field, ωz, for AR = 7.5 and Re= 400. Contours are evenly spaced
over the range −4.0 � ωz � 4.0; with �ωz = 0.5. Vorticity has been non-dimensionalized by
U∞/H .
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Figure 4. Spanwise vorticity field for AR= 17.5 and Re= 400. Contours are evenly spaced
over the range −4.0 � ωz � 4.0; with �ωz = 0.5.

Figure 3 shows typical equispaced contours of vorticity in the range ωz = ± 4 for
AR = 7.5. The Reynolds number for this case is Re = 400, based on the cylinder
thickness. The vortex structures observed are consistent with those found for other
cylinder aspect ratios investigated, as can be seen by comparing figure 3 with figure 4
which shows a snapshot of the vorticity field for the case of AR =17.5, once again at
Re= 400, based on the cylinder thickness. The vortex cores for the case of AR = 7.5
have a maximum vorticity of ωz = ± 2.5. For the longer cylinder aspect ratio length
case of AR = 17.5, the maximum vorticity measured in the positive forming vortex
core is only ωz = 1.5.

The shedding frequency is presented in figure 5 in the form of the Roshko number
(where Ro = ReSt), as a function of Reynolds number. Both the Reynolds number
and the Roshko number use d ′ as the spatial scaling parameter, where d ′ is defined as
H +2δ and δ is the momentum thickness of the boundary layer measured at the trail-
ing edge of the cylinder. By using d ′ as the spatial scaling parameter, the Roshko
number results were found to form a linear relationship with Reynolds number.
Our results are also directly comparable with the experimental results of Eisenlohr &
Eckelmann (1989), who observed a linear relationship between Ro and Re independent
of cylinder aspect ratio; their results are also presented in figure 5. The results for all
aspect ratios simulated lie within the experimental scatter of Eisenlohr & Eckelmann’s
(1989) results.

Finally, the mean drag results are presented in figure 6 as a function of Reynolds
number for the case of AR = 7.5, 12.5 and 17.5 (here the Reynolds number is based
on the cylinder thickness only). For the case of AR =7.5, the drag coefficient increases
monotonically as a function of Reynolds number for Re � 350. For AR = 12.5, this
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Figure 5. The shedding frequency, expressed as the Roshko number (Ro =ReSt), where for
this figure both the Strouhal number and Reynolds number use d ′ as the length scale. −�−,
experimental results of Eisenlohr & Eckelmann (1989); −�−, AR = 7.5 results; −�−, Ar= 12.5
results; −�−, Ar =17.5 results. The shaded region is indicative of the spread in Eisenlohr &
Eckelmann’s experimental data.
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Figure 6. Time mean drag coefficient as a function of Reynolds number, for Reynolds
numbers in the range Re= [300, 650]. −�−, AR = 7.5; −�−, 12.5; −�−, 17.5.

monotonic increase is less pronounced, and occurs only in the range Re � 450. For
AR =17.5, the drag monotonically decreases for all Reynolds numbers considered.
A quantitative relationship between the mean drag results and the strength of the
shedding vortices is presently being investigated.
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Figure 7. Floquet multipliers for the dominant modes at each spanwise wavelength for
different Reynolds numbers. (a)–(d) correspond to AR = 2.5, 7.5, 12.5, 17.5 respectively.

3.2. Floquet multipliers

A Floquet analysis was performed for each aspect ratio over a range of Reynolds
numbers. For each Reynolds number, a range of spanwise wavelengths was considered,
including at least 0.5 < λ/H < 4.0. Some simulations were performed for longer
wavelengths to ensure that the dominant modes were captured. Once the critical
Reynolds number for each mode was bracketed, interpolation was used to refine the
estimate of the critical Reynolds numbers and corresponding wavelengths.

Figures 7(a)–(d) show the Floquet multipliers for the dominant modes for a range
of spanwise wavelengths and Reynolds numbers. The figures refer to aspect ratios
AR = 2.5, 7.5, 12.5 and 17.5, respectively.

Local maxima in these figures correspond to topologically different wake instability
modes for the corresponding wavelength ranges. If the magnitude of the Floquet
multiplier at a local peak exceeds unity, then the flow field is critically unstable to
the mode at the particular wavelength. Again, this means that its amplitude will grow
exponentially from background noise resulting in transition to three-dimensional flow.

3.2.1. Aspect ratio 2.5

Figure 7(a) shows Floquet multipliers for the AR = 2.5 case. For wavelengths in
the range 0.5 � λ/H � 2.0, no growing Floquet modes emerged from the iteration
procedure within 100 cycles for Re � 500. For higher wavelengths, the procedure
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(a)

(b)

Figure 8. Comparison of the wake spanwise vorticity field of the Floquet mode for a circular
cylinder (Re = 190, λ= 4D) and short aspect ratio cylinder (AR = 2.5,Re= 240, λ=4H )
showing the longer wavelength instability for the short aspect ratio cylinder is analogous
to the Mode A instability of the circular cylinder. The spatial structure of the perturbation
field relative to the position of the Kármán vortices is highlighted by the contours of spanwise
vorticity with ωz = ± 0.2. Both images are at approximately the same phase in the shedding
cycle.

converged quickly (typically within 30 cycles for four significant figure accuracy) and
the Floquet multiplier variation corresponding to the dominant mode is shown on the
figure for different Reynolds numbers. The instability mode first becomes unstable
for λ/H � 7 at a Reynolds number of approximately 240. However, the instability is
fairly broadband, and for Re =250, the unstable range is 3.5 < λ/H < 10. The upper
limit is likely to be greater than this value, but no computations have been performed
to confirm this. As the Reynolds number is increased, the most unstable wavelength
is reduced so that for Re =400 it is approximately 3.5H .

The spatio-temporal symmetry and the perturbation field distribution for this mode
are analogous to those of the Mode A instability for the circular cylinder (Williamson
1988). Figure 8 shows a comparison between coloured contours of spanwise perturba-
tion vorticity for the Mode A circular cylinder wake at Re= 190 at λ/H = 4, and the
AR =2.5 cylinder wake for Re= 400 and λ/H = 4. The circular cylinder Floquet mode
shown here has been calculated independently and agrees with the mode structure
found by Barkley & Henderson (1996). Both wake instabilities show the same overall
near- and far-wake structure and the same spanwise/streamwise vorticity topology, i.e.
at the same spanwise location the spanwise/streamwise vorticity swaps sign between
each Strouhal vortex pair.

3.2.2. Aspect ratio 7.5

Figure 7(b) depicts the Floquet multipliers for a cylinder of aspect ratio of AR =7.5.
Three distinct stability branches are observed for this case, corresponding to three
topologically different instability modes. For the Reynolds number range investigated,
the mode corresponding to the longest wavelength instability becomes critical at
Re ≈ 470 for λ/H = 3.9. Again, this mode is topologically similar to Mode A of the
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(a)

(b)

Figure 9. Comparison of the wake streamwise vorticity field of the Floquet mode for
the elliptical leading-edge cylinder (AR= 7.5, Re = 450, λ= 2.2H ) and the circular cylinder
(Re= 259, λ= 0.8D) showing the same spatial symmetries.

circular cylinder wake and the critical wavelength is similar. In addition, as for the
circular cylinder, the instability quickly becomes relatively broadband as the Reynolds
number is increased.

At λ/H = 2.2, another local maximum is observed. For AR = 7.5, this mode is
approximately neutrally stable over the Reynolds number range simulated in this study
(400 � Re � 500). Its spatio-temporal symmetry is analogous to that of the Mode B
instability described by Williamson (1988). In figure 9, the spatial structure of the
streamwise vorticity of the perturbation field is compared with that of Mode B for a
circular cylinder wake (Re = 259 and λ/H = 0.82) at a similar point in the shedding
cycle. The symmetry is such that the sign of streamwise vorticity is maintained from
one half-cycle to the next. This is true of Mode B for a circular cylinder. However, there
are some important differences in the perturbation field distributions. For the circular
cylinder, the perturbation vorticity decays downstream much more quickly than for
the cylinder geometry under investigation. This is not surprising given the lower
critical Reynolds number and hence higher relative viscous diffusion. In addition,
because the mode for the circular cylinder has a considerably shorter relative spanwise
wavelength than that for the cylinder geometry considered here, the structures will be
subject to more rapid diffusion anyway.

The difference in spanwise wavelength is surprising, especially given the wavelength
predictions for the square cylinder (Robichaux et al. 1999) are similar to those for a
circular cylinder if the length scale for the square cylinder is taken as the diagonal
length. In both these cases, the ratio of the Mode B to Mode A wavelength is between
22 and 23 %. Here, this ratio is greater than 50 %. If fact, examination of figure 10,
which shows the perturbation streamwise vorticity in the neighbourhood the newly
forming vortices, reveals that the near-field spatial structure of the perturbation field
has some important differences relative to the circular cylinder case. In the newly
forming vortex in the top half of the vortex street, the perturbation field has swapped
sign between the two different bodies. This is indicated by the circles overlaid on
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(a)

(b)

Figure 10. Enhanced view of streamwise vorticity field of the Floquet mode for the elliptical
leading-edge cylinder (AR= 7.5, Re= 450, λ= 2.2H ) and the circular cylinder (Re= 259,
λ= 0.8D). The circles overlaid on the contour plots highlight the change to the spatial
distribution of the vorticity in the newly forming vortices. The arrows show the effect on the
downstream vorticity distribution half of a shedding cycle later.

the plots. One result of this reversal for the wake for the current cylinder geometry
is that half a cycle later, the streamwise vorticity of opposite sign to the dominant
streamwise vorticity pervading the braids is amplified, leading to a different local
spatial structure at the corresponding downstream position. This is indicated by the
arrows on the figure. Because of the differences in the near-wake perturbation field
and the spanwise wavelength, we will refer to this mode as Mode B′.

At λ/H =0.9–1.0, another local peak corresponding to a third instability mode is
observed. This mode remains clearly subcritical up to the highest Reynolds number
simulated for this cylinder aspect-ratio case. The value of λ/H corresponding to
maximum growth varies with Reynolds number; a higher Reynolds number corres-
ponds to a slightly smaller critical spanwise wavelength. The Floquet multipliers (µ)
for this mode are oscillatory, indicating that the Floquet multiplier (corresponding to
an analysis assuming complex eigenmodes) is actually complex. The Floquet analysis
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Figure 11. Streamwise vorticity field of the Mode S′ instability (AR = 7.5, Re= 500, λ= 1.0H ).
The positions of the Kármán vortices are highlighted by the contours of spanwise vorticity of
the base flow at ω = ± 0.2.

method described above cannot extract complex coefficients directly; however, the
analysis was repeated assuming a complex perturbation field. Like the situation for the
square cylinder (Robichaux et al. 1999), the mode has a complex Floquet multiplier
close to minus one, and hence appears to be almost a subharmonic mode. However, as
pointed out by Blackburn & Lopez (2003), a true subharmonic is extremely unlikely,
and does not occur in this case either.

The wavelength of this mode is similar to that of Mode B for a circular cylinder
wake, although the spatio-temporal symmetry is different. Figure 11 shows a snapshot
of the streamwise perturbation field close to the end of the cylinder, similar to the
snapshots revealing Modes B and B′ in figure 10. While the mode is time-varying
from one shedding period to the next, this snapshot shows that the perturbation field
structure in the newly forming vortex structure at the top of the trailing edge, and in
the near-wake region, is perhaps more reminiscent of Mode B than is the intermediate
wavelength Mode B′ instability discussed above. Thus, perhaps this instability has
more in common with Mode B than Mode S (Robichaux et al. 1999) or Mode C
(Zhang et al. 1995), even though Ryan (2004) has shown that the spatio-temporal
symmetry is different. We will refer to this mode as Mode S′ (even though the mode
is not a subharmonic) to relate it to the time-varying mode for a square cylinder
(Robichaux et al. 1999).

3.2.3. Aspect ratio 12.5

As the cylinder aspect ratio is increased to 12.5 (figure 7c), Mode B′ is observed
to become unstable at a lower Reynolds number than Mode A. Mode B′ is found to
become critically unstable at a critical Reynolds number of Recrit � 410 for a critical
wavelength of λ/H � 2.2, whereas Mode A has a much higher critical Reynolds
number of Recrit ≈ 600. This has experimental ramifications. It indicates that Mode
B′ will be the first three-dimensional wake mode observed experimentally for long
aspect-ratio elliptical leading-edge cylinders. For the circular cylinder wake, it appears
that the rapid transition to a chaotic wake state is due to the nonlinear interaction of
the A and B instability modes (Henderson 1997). Experimentally, Williamson (1996)
has shown that Mode A, unlike Mode B, is not periodic in its saturated state even
for a Reynolds number not far in excess of the critical value. Mode B has a relatively
narrow instability wavelength band and is non-hysteretic, so for the geometry studied
here, the swapping of the order of occurrence of two modes with different spatio-
temporal symmetries may mean that the initial transition to three-dimensional flow is
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much cleaner. Even at higher Reynolds numbers, the spectrum of wake wavelengths
may be quite different to that found for a circular cylinder because of the order of
transition and interactions between the modes, and the different apparent dominance
of the intermediate wavelength mode which does not exist for the circular cylinder
wake.

As for AR =12.5, Mode S′ remains subcritical for the range of Reynolds numbers
simulated. Once again, the amplification of the perturbation field has an oscillatory
component indicative of a complex Floquet multiplier. The wavelength corresponding
to the slowest decay rate was found to decrease slightly with increasing Reynolds
number.

3.2.4. Aspect ratio 17.5

The results for this aspect ratio are similar to those for AR =12.5. The Floquet
multipliers are shown in figure 7(d). Once again, Mode B′ is found to become unstable
first at a critical Reynolds number of Recrit ≈ 430. Mode A becomes unstable for
Re > 700, with a preferred wavelength of approximately 3.5H . Mode S′ was found to
become critically unstable at Recrit ≈ 690 for λ/H ≈ 0.7. Thus, both Mode B′ and S′

are more unstable than Mode A for this aspect ratio.

3.3. Comparison of results for cylinders of different aspect ratios

This choice of geometry allows a wider parameter space study than has been presented
in previous work, focusing on the effect of alteration of bluff-body aspect ratio and,
by implication, boundary-layer characteristics at separation, to the wake flow field.
Previous studies (Roshko 1955) indicate that different bluff-body geometries generally
have very similar primary wake structures. In this section, we speculate on the nature
of the instabilities, the possible effect of the different orderings of critical Reynolds
numbers for the onset of the instabilities, and the relationship to previous studies.

3.3.1. Critical Reynolds numbers for transition

Figure 12 depicts the critical Reynolds numbers for each three-dimensional mode
transition as a function of cylinder aspect ratio. The curves represent approximate fits
to the data. For Mode A, it was found that a relationship of the form Recrit ∝ AR1/2

was found to fit the data well. For Mode B′, the transition Reynolds number remains
approximately constant independent of aspect ratio. Note that for AR = 7.5, Mode
B′ only reached approximately neutral stability (µ = 0.995) at Re =440. At higher
Reynolds numbers, the maximum Floquet multiplier decreased slightly. Mode S′

becomes critical for AR = 17.5 but this is not shown on the figure.

3.3.2. Mode A

For all aspect ratios examined, Mode A is critically unstable at approximately
the same spanwise wavelength of 3.5H . This compares well with the experimentally
observed wavelength of 3–4H (Williamson 1996) and the predicted critical wavelength
of 3.96H (Barkley & Henderson 1996) for a circular cylinder wake. Also, as found for
the circular cylinder, at Reynolds numbers not far in excess of critical, amplification
of this mode occurs over a broad wavelength band. On the other hand, the critical
Reynolds number increases significantly with aspect ratio: from Recrit ≈ 240 for
AR =2.5 to Rec ≈ 700 for AR = 17.5. The trend is shown in figure 12. As noted, a
fit to the data points is shown, assuming a relationship of the form Recrit ∝ (AR)1/2.
While this is not perfect, it fits the data reasonably well.
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Figure 12. Critical Reynolds number for the different mode transitions as a function of
cylinder aspect ratio. �, Mode B′ transition; �, Mode A transition. The curves represent an
approximate fit to the data.

While not directly apparent from figure 7, for each of the aspect ratios considered,
Mode A was found to be connected to the neutral branch, in agreement with previous
results for the circular cylinder.

It has been suggested (e.g. Williamson 1996; Leweke & Williamson 1998; Thompson
et al. 2001b) that Mode A is predominantly an elliptical instability with the spanwise
wavelength scaling on the length scale of the vortex cores. For a circular cylinder
wake, the vortex perturbation pattern in the vortex cores appears to be clearly
elliptical in nature in the wake downstream from the body. However, there has been
considerable debate in the literature (e.g. Henderson 1997; Thompson et al. 2001b) on
whether the elliptical instability mechanism is the cause in the instability in the near
wake. The results for different aspect ratios are interesting in that the wavelength of
the Mode A instability is approximately independent of aspect ratio and similar to
that for a circular cylinder wake. For both circular cylinders and elliptical leading-
edge cylinders, the length scale of the vortices is determined primarily by the body
cross-section; the wake visualizations in this paper confirm this by showing that the
vortex cores are similar in size for the different geometries. This is consistent with the
hypothesis that the instability is an elliptic instability of the vortex cores.

According to standard laminar boundary-layer theory, the boundary-layer thickness
(δ) can be approximated by

δ = 5.0
( x

Re

)1/2

,

where x is the distance from the (virtual) origin and the Reynolds number is based
on thickness H . Thus, for different aspect ratios, if the transition required that the
boundary-layer thickness was similar as the flow enters the wake at the trailing edge,
this should mean that the transition Reynolds number should vary in proportion
to aspect ratio (x). This is clearly not the case, as indicated by the approximate fit
described above. On the other hand, Landman & Saffman (1987) have suggested that
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the growth rate (σ ) of an elliptic instability is given by

σ = σinviscid − �σviscous.

Here the inviscid growth rate is a function of the ellipticity of vortices; Eloy & Le
Dizes (2001) have analysed the inviscid growth rate for a number of vortex profiles.
Now suppose that the ellipticity of shed vortices is mainly dominated by convective
effects rather than viscosity, once the vortices are shed. Assuming this, it follows
that if the transition Reynolds number did vary in proportion to the aspect ratio,
the boundary layer at the trailing edge would be similar, hence the ellipticity of the
vortex structures in the wake should be similar and the first term contributing to the
growth rate should be similar. The viscous correction is

�σviscous ∝ 1

Re(λ/H )2
,

where λ is the spanwise wavelength. This term reduces the amplification of short
wavelength modes providing a short wavelength cutoff. An interpretation of Mode
A in terms of elliptic instability theory is that the Reynolds number must be high
enough so that the viscous correction term does not prevent the wavelength based on
the core size from growing. We have seen that the inviscid contribution to the growth
rate suggests the transition Reynolds number should be approximately proportional
to aspect ratio. However, since the viscous correction to the growth rate is inversely
proportional to the Reynolds number and the wavelength is primarily determined by
core size (which is a proportional to thickness), the viscous correction to the growth
rate should be less at higher Reynolds numbers hence the instability mode should
already be growing. Hence, the theory suggests that the critical Reynolds-number
dependence on aspect ratio should be less than linear. While this is not compelling
evidence that an elliptical instability is the controlling generic instability mechanism
for Mode A, it is at least consistent.

3.3.3. Mode B′

For aspect ratios between 7.5 and 17.5, a distinct instability mode with the same
spatio-temporal symmetry as Mode B was found to become unstable. We have referred
to this mode as Mode B′ based on its spatial symmetry. The critical wavelength was
found to be approximately 2.2 cylinder thicknesses over the range of aspect ratios
studied. The critical Reynolds number does not vary significantly with aspect ratio.
Visualizations in the neighbourhood of the trailing-edge reveal that the perturbation
field for Mode S′ has more in common with Mode B, than Mode B′. An interpretation
may be that the spatio-temporal symmetry is perhaps not an ideal classification
scheme. In this case, Mode S′ and Mode B also share a common relative spanwise
wavelength, even though their spatio-temporal properties are different.

3.3.4. Relative occurrence of Mode A, Mode B′ and Mode S′

An increase in the aspect ratio alters the preferred mode of instability. For an
aspect ratio of AR = 7.5, the initial instability is Mode A with a critical Reynolds
number approximately equal to 475. As the aspect ratio is increased to 12.5, the
critical Reynolds number for three-dimensional transition is approximately 450;
however, Mode B′ is now the initial mode of instability, in preference to Mode A.
As the aspect ratio is further increased to 17.5, the critical Reynolds number remains
close to 450, and once again Mode B′ is the initial instability mode. As the aspect
ratio is increased still further, the critical Reynolds number for the Mode A and
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Mode B′ instabilities presumably becomes increasingly separated. Further increases
in the aspect ratio may result in Mode A not becoming critical at all, or at least, the
development and saturation of Mode B may lead to a distinctly different transition to
turbulent flow which may not involve Mode A. For larger aspect ratios, even Mode
S′ becomes unstable prior to Mode A, also suggesting a further possible alteration to
the transition scenario.

3.3.5. On the nature of modes

A possible interpretation is that we can view these instability modes as a combina-
tion of idealized generic instability types such as elliptic, hyperbolic and centrifugal,
with feedback from one cycle to the next to sustain the mode, but with possibly one
mechanism governing the growth rate and wavelength selection. There is reasonable
circumstantial evidence that this is the case for Mode A for a circular cylinder wake
(e.g. Leweke & Williamson 1998; Thompson et al. 2001b) although dissenting views
exist (Henderson 1998). Apart from the analysis above, other evidence comes from nu-
merical simulations and experimental visualizations of Mode A which show invariant
streamtubes as predicted by elliptic instability theory, and are consistent with the
predicted spanwise wavelength and the growth rate in the core. Julien et al. (2004)
have shown that the primary instability modes for an idealized Bickley wake also
show strong elliptical character, in that the measured local growth rate is predicted
well by elliptical instability theory, even though the perturbations migrate to, and are
amplified in, the braid regions where the flow is hyperbolic. Conversely, the growth
rates predicted by hyperbolic instability theory do not match the observed amplifica-
tion rates. Julien et al. (2004) and others have suggested that the hyperbolic instability
is slaved to elliptic instability which controls the growth rate and wavelength selection.

There is more doubt as to the nature of Mode B. Williamson (1996) and Leweke &
Williamson (1998) suggest that the hyperbolic instability is the dominant mechanism,
especially given that the mode appears to be located in the braids. Brede, Eckelmann &
Rockwell (1996) have suggested that Mode B results from an instability of the separa-
ting shear layer in the near wake which they attribute to local centrifugal forces.
In the case here, as noted, the mode is mostly concentrated initially between the form-
ing vortices and in the braids between the vortices as the flow convects downstream.
However, given the considerably longer spanwise wavelength than for the circular
cylinder, the elliptical instability probably plays a stronger role in the cores and may
support the maintenance of the instability.

3.3.6. The possible role of centrifugal instability in the Mode B instability

Although there has been speculation that a centrifugal instability may be the pri-
mary controlling mechanism involved in the development of the Mode B instability,
as far as we are aware, little evidence has been published supporting this hypothesis.
We explore this further in this section.

Figure 13 shows a plot of streamwise perturbation vorticity field at the time of
maximum growth (see inset). The arrows show the position where the perturbation
field is growing fastest. Streamlines have been generated using the velocity relative to
the centre of the convecting newly forming vortex in the lower half of the wake. The
streamlines are elliptical within the forming vortex structure. Outside this vortex, at
the position where the perturbation growth is maximal, the streamlines converge to a
hyperbolic point. In fact, the maximum growth occurs just inside this hyperbolic point
towards the vortex centre. The instability growth measured by the rate of change of
the maximum perturbation amplitude is approximately 7.2(U/D)2 at this time.
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Figure 13. Streamlines for velocity field relative to the motion of the newly forming vortex
centre. Spanwise vorticity contours (ωz = ± 0.2) are overlaid to show the position of the wake
vortices. The inset shows the streamwise vorticity field of the Mode B instability at the same
time. The arrows show the position where the growth of the perturbation is a maximum.
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Figure 14. Azimuthal velocity field associated with forming vortex structure. The dashed
line shows a Gaussian fit to reduce the velocity to zero smoothly.

As a test of the hypothesis that the centrifugal instability plays a dominant role in
the growth of the instability and wavelength selection, the following procedure was
carried out. The velocity field was extracted along a line from the vortex centre passing
through the position where the perturbation growth was maximal. The velocity of
the vortex centre was subtracted and this was used to construct an azimuthal velocity
field for an isolated vortex, as shown in figure 14. The velocity field was only extended
out to where the azimuthal velocity changes sign. This corresponds to approximately
the position of the hyperbolic point shown in figure 13. A decaying Gaussian profile
matching the function and the first derivative was used to reduce the velocity smoothly
to zero. This is shown by the dashed part of the curve in the figure 14.
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(a) (b)

Figure 15. (a) Idealized azimuthal velocity field for the stability calculation. (b) Azimuthal
vorticity of the centrifugal instability for λ/D =0.8D corresponding to the preferred wavelength
of the Mode B instability from direct numerical simulations. The inner curve shows the position
where the vorticity drops to zero and the outer curve indicates the approximate location of
the hyperbolic point.
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Figure 16. Predicted growth rate as a function of spanwise wavelength for the centrifugal
instability model problem.

The linear stability of this velocity field, shown in figure 15(a), was then determined.
To achieve this aim, this base flow field was frozen, and the linearized Navier–
Stokes equations were solved to determine the growth rate as a function of spanwise
wavelength. Figure 16 shows the predicted growth rate for the associated centrifugal
instability. Figure 15(b) shows the perturbation azimuthal vorticity field corresponding
to the maximum growth rate. The maximum growth rate was found to be about
10(U/D)2 corresponding to a preferred wavelength of about 0.6D. These are not too
far from the measured growth rate of 7.2 and the critical spanwise wavelength of 0.8,
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especially given the latitude used in constructing the model. Importantly, figure 15(b)
shows that the predicted maximum perturbation occurs at almost the precise location
observed in the full numerical simulations.

Since the flow is evolving temporally, the favourable conditions for growth are pro-
bably only maintained for perhaps one quarter of a cycle. Given a Strouhal number
of 0.2, this means that the total amplification is approximately 10(5/4) ≈ 18. The
perturbation remains in the braids as it convects downstream, and the amplitude
of the perturbation is maintained. This may be sufficient to produce an upstream
influence from one half-cycle to the next half-cycle to maintain the instability.

Of course, this speculation applies to Mode B for a circular cylinder. Figure 10 shows
that there are some distinct differences to the perturbation field between Modes B
and B′, the latter showing a higher and more persistent perturbation amplitude in
the core. As alluded to above, this may mean that the elliptical instability plays a
stronger role for Mode B′, especially given the longer wavelength and therefore the
reduced problem of the viscous cutoff. In addition, since the ellipticity of the core is
maintained during the development of the wake, the elliptical instability is maintained
for a long time, unlike the proposed centrifugal instability.

3.4. Three-dimensional topology of the floquet modes

The three modes found have been described in the previous sections for each aspect
ratio investigated. In order to provide a similar base state, the three-dimensional
structure of the wake flow field for each mode is presented for the specific case of
cylinder aspect ratio AR = 7.5, and Reynolds number Re = 400. The Floquet mode
topology for this case is representative of that found for other cylinder aspect ratio
cases.

For each mode, the Floquet velocity field was computed and this was added as a
small perturbation to the base flow to produce a flow field representative of the three-
dimensional mode in the linear regime. As representative of Modes A, B′ and S′,
perturbation fields were calculated for imposed spanwise wavelengths of 4H , 2H
and 1H , respectively. For uniformity in the visualizations, the spanwise domain has
been extended out to 12H . This allows the spanwise variation to be observed and
compared more easily.

Isosurfaces of positive and negative streamwise vorticity for Mode A are presented
in figure 17. The spanwise vorticity is also plotted (ωz = ± 0.2U/D) to highlight the
position of the vortical structures instability field relative to the spanwise rollers in
the wake. The swapping of the sign of streamwise vorticity from one half-cycle to the
next is clearly apparent. As previously observed for Mode A, the perturbation field
is strong in the braid regions between the rollers, although it is also strong inside the
roller cores, but this is more difficult to discern from the plots.

Figure 18 shows similar isosurfaces for Mode B′. Twice as many spanwise structures
are shown because of the reduced spanwise wavelength. At a given spanwise position,
streamwise vorticity ωx of a given sign is generated in a similar fashion to that found
for a circular cylinder (Williamson 1996). The sign of ωx , at a given spanwise location,
remains constant over successive shedding cycles and forms a continuous chain of
streamwise vorticity of the same sign. The similarity to the Mode B topological
structure for a circular cylinder (Williamson 1996) is apparent, despite the much
longer relative wavelength.

Figure 19 shows streamwise vorticity isosurfaces for Mode S′. This mode is distinctly
different to Modes A and B′ as the spanwise wavelength is much smaller in comparison
and the streamwise vorticity appears to swap sign approximately every full shedding
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Figure 17. Isosurfaces of the streamwise vorticity field for the Floquet Mode A. Isosurfaces
of spanwise vorticity (ωz = ± 0.2) are also shown to indicate the positions of the Kármán
vortices. (Re=400, AR= 7.5).

period, which is why the corresponding mode for a square cylinder has been wrongly
identified with a subharmonic mode previously. (Note that this Floquet mode structure
was obtained from a complex Floquet mode calculation, which allows for travelling
modes as well as spatially stationary modes (see Blackburn & Lopez 2003).

3.5. Three-dimensional DNS calculations

Floquet analysis has elucidated two important features of the Mode B′ instability in
the wake of an aerodynamic leading-edge blunt trailing-edge flat cylinder. Mode B′

was found to have a consistent critical wavelength λ/H = 2.2 across all aspect ratio
cylinders investigated; this value varies markedly from that for small-aspect bodies
studied previously, i.e. either circular or square cylinders. Also, for sufficiently large
cylinder aspect ratio, Mode B′ was found to precede the transition to Mode A; once
again, in contrast to the observed ordering for circular and square cylinders. There was
also evidence presented that the perturbation field in the near wake, and the spanwise
wavelength, have more in common with Mode S of a square cylinder than Mode B.
In order to verify these findings, and investigate the transition towards the saturated
state, a three-dimensional direct numerical study was performed for an aspect ratio
where Mode B′ is dominant and Mode A is also unstable. The Floquet analysis shows
these criteria occur for AR = 12.5 and Re = 600.

Full three-dimensional simulations were undertaken using a Fourier/spectral-
element code documented and validated in Thompson et al. (1996, 2001a), to explore
the wake evolution from two-dimensional periodic flow to a fully three-dimensional
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Figure 18. Isosurfaces of the streamwise vorticity field for the Floquet Mode B′. Isosurfaces
of spanwise vorticity (ωz = ± 0.5) are also shown to show the positions of the Kármán vortices.
The selected spanwise wavelength is 2H with 6 wavelengths are shown. (Re= 400, AR = 7.5).

saturated wake flow. This calculation assumes a Fourier series representation in the
spanwise direction and hence periodicity is enforced. This places a restriction on the
allowable spanwise wavelengths, determining both the upper wavelength limit and
the discrete wavelength spectrum. For the parameters discussed above, a spanwise
domain size of 12H was chosen. This allows three Mode A wavelengths to fit inside
the domain (and approximately 6 and 12 Mode B′ and S′ wavelengths). Sixty-four
Fourier planes were used for the computation, corresponding to about 12 planes
(6 modes) per Mode B′ wavelength. Whilst this is somewhat minimal, these full three-
dimensional simulations are still computationally expensive. Experience indicates that
this discretization should still provide reasonable resolution for the saturated mode.

Figure 20 shows streamwise and spanwise vorticity isosurfaces for the DNS
investigation once the flow has reached a quasi-asymptotic state. The simulation was
continued for approximately 30 shedding cycles after the wake saturated; however,
at the end of this time, there was still some irregularity in downstream velocity traces
at selected points. The simulation was discontinued at this time without resolving
whether the final state would become truly periodic. The streamwise vortex structures
shown here resemble the Mode B′ isosurfaces shown in figure 18. The main difference
is the pinching together of the opposite signed vortex structures at their heads in line
with many other studies (e.g. Henderson 1997). The spatial symmetry of the saturated
mode is clearly identical to that of Mode B′. There are 6 wavelengths shown in the
figure, indicating a selected spanwise wavelength of 2H , consistent with the preferred
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Figure 19. Isosurfaces of the streamwise vorticity field for the Floquet Mode C. Isosurfaces
of spanwise vorticity (ωz = ± 0.5) are also shown to show the positions of the Kármán vortices.
Spanwise wavelength is 1H and 12 wavelengths are shown. (Re= 400, AR = 7.5).

wavelength of the Floquet mode. There is no visual evidence of any remnant of
Mode A in the visualization, although perhaps this is not surprising given the relative
amplification of Modes A and B′ at the Reynolds number of the simulation. At least,
this simulation supports the findings of the Floquet analysis.

4. Conclusions
Floquet stability analysis has been presented quantifying the three-dimensional in-

stability modes associated with the two-dimensional periodic base flow of an elliptical
leading-edge square trailing-edge cylinder. The three modes show both some similari-
ties to, and differences from, the three instability modes, A, B and S, previously
identified for compact bodies. For very short bodies, Mode A is clearly dominant
and it is expected that the transition scenario may be similar to that for a circular
cylinder. For intermediate-aspect-ratio bodies (AR > 7.5), the intermediate wavelength
instability mode, Mode B′, undergoes transition at the lowest Reynolds number. This
mode has the same spatio-temporal symmetry of Mode B for a circular cylinder,
but a much longer wavelength (2.2H compared to 0.8D), and there is evidence that
these instabilities are distinctly different in the near field. For very long-aspect-ratio
bodies, the difference in critical Reynolds numbers for Modes B′ and A becomes more
substantial, indicating that Mode A may play a very much reduced role, if any, in
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Figure 20. Streamwise vorticity contours from three-dimensional DNS calculation for
AR= 12.5 and Re= 600 showing Mode B instability. and iso-surfaces represent ωx ,
iso-surfaces represent ωz the cylinder is shown as .

the transition to turbulence. For AR =17.5, the shortest wavelength instability mode
is even more unstable than Mode A, again possibly affecting the transition scenario.

Sheard, Thompson & Hourigan (2003) investigated the three-dimensional instability
modes for flow past a toroid with its axis parallel to the oncoming flow. As the aspect
ratio is varied, this geometry bridges the gap between the axisymmetric geometry of
a sphere (small aspect ratio) and that of a two-dimensional circular cylinder (infinite
aspect ratio). There were different sets of instability modes depending on the aspect
ratio. For large aspect ratios, three important instability modes were found: Modes A
and B, analogues of the circular cylinder mode; and Mode C, the intermediate wave-
length mode which is a subharmonic. In this case, it is possible for a true subharmonic
to exist since the group properties of the system are different from those governing
flow past a circular cylinder (Blackburn & Lopez 2003). Specifically, the symmetry
about the cylinder centreplane no longer holds because of the curvature of the body.
For intermediate aspect ratios, Mode C is the most unstable mode. Even though this
is not strictly a two-dimensional cylindrical body, it is a related case and, like the
situation for the bluff body considered in this paper, again indicates that transition
may be less generic than previously assumed.

The possible role of the generic centrifugal instability in the generation and
maintenance of the short wavelength Mode B instability of a circular cylinder wake
was investigated. The model based on an isolated vortex with the same local properties
where the instability growth rate was maximal, produced both a realistic growth rate



28 K. Ryan, M. C. Thompson and K. Hourigan

and spanwise wavelength. However, the conditions for growth are only maintained for
part of a cycle. Hence, whether this limited growth is sufficient to maintain a feedback
loop from one cycle to the next is a matter of debate. This situation differs somewhat
from the speculation about Mode A being primarily due to an elliptic instability (e.g.
Leweke & Williamson 1998; Thompson et al. 2001b; Julien et al. 2004), since the
vortex cores are maintained during the propagation of the wake downstream and
hence a lower but sustained growth may support the instability.

Finally, a full three-dimensional simulation was performed which produced a quasi-
asymptotic state consistent with the findings of the Floquet analysis. Ideally, it would
be advantageous to undertake simulations at significantly higher Reynolds numbers
to investigate possible interactions between modes and transition to turbulence, but
this would require very long integration times and be very expensive computationally.
We are planning to investigate this problem experimentally in the near future.
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